Scorza-Dragoni approach to Dirichlet problem in Banach spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Dirichlet Polynomials in Banach Spaces

Recent results on Dirichlet series ∑ n an 1 ns , s ∈ C, with coefficients an in an infinite dimensional Banach space X show that the maximal width of uniform but not absolute convergence coincides for Dirichlet series and for m-homogeneous Dirichlet polynomials. But a classical non-trivial fact due to Bohnenblust and Hille shows that if X is one dimensional, this maximal width heavily depends o...

متن کامل

Kato’s Square Root Problem in Banach Spaces

Abstract. Let L be an elliptic differential operator with bounded measurable coefficients, acting in Bochner spaces Lp(Rn;X) of X-valued functions on Rn. We characterize Kato’s square root estimates ‖ √ Lu‖p h ‖∇u‖p and the H-functional calculus of L in terms of R-boundedness properties of the resolvent of L, when X is a Banach function lattice with the UMD property, or a noncommutative Lp spac...

متن کامل

The cluster value problem for Banach spaces . ∗ †

The main result is that the cluster value problem in separable Banach spaces, for the Banach algebras Au and H ∞, can be reduced to the cluster value problem in those spaces which are `1 sums of a sequence of finite dimensional spaces.

متن کامل

A Pythagorean Approach in Banach Spaces

Let X be a Banach space and let S(X)= {x ∈ X , ‖x‖ = 1} be the unit sphere of X . Parameters E(X) = sup{α(x), x ∈ S(X)}, e(X) = inf{α(x), x ∈ S(X)}, F(X) = sup{β(x), x ∈ S(X)}, and f (X) = inf{β(x), x ∈ S(X)}, where α(x) = sup{‖x + y‖2 + ‖x − y‖2, y ∈ S(X)}, and β(x) = inf{‖x + y‖2 + ‖x− y‖2, y ∈ S(X)} are introduced and studied. The values of these parameters in the lp spaces and function spac...

متن کامل

Nonlocal Cauchy Problem for Impulsive Differential Equations in Banach Spaces

where A is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators T (t) on a Banach space X; f : [0, b]×X → X; 0 < t1 < t2 < · · · < tp < tp+1 = b; Ii : X → X, i = 1, 2, · · · , p are impulsive functions and g : PC([0, b];X) → X . During recent years, the impulsive differential equations have been an object of intensive investigation because of the wide possi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2014

ISSN: 1687-2770

DOI: 10.1186/1687-2770-2014-23